AFMによる毛髪表面の微細構造観察

大気中の分析により変質を抑えた定量評価が可能

測定法 :AFM

製品分野:化粧品•医薬品分析目的:形状評価

概要

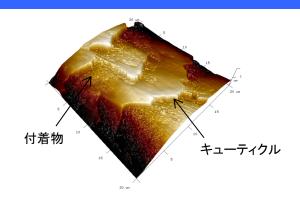
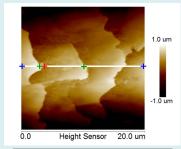
毛髪表面にあるキューティクルの状態を、AFMにより解析した事例をご紹介します。

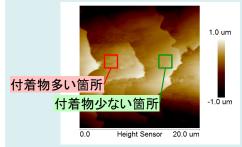
1.0 um

AFM は、ナノスケールの凹凸形状を三次元的に計測する手法です。大気中で分析を行うため、有機物の変質や脱ガスなどを起こさず、試料本来の形状を評価可能です。本事例では、キューティクルの開き具合や付着物成分の分布、領域ごとの粗さ評価を画像で評価した他、数値処理により定量的に凹凸を評価しました。シャンプー後の毛髪の状態評価や、整髪料を塗布後の塗布状態の評価に有効です。

データ

D Height Sensor 20.0 um 図1 毛髪表面のAFM 像


図2 毛髪表面の3次元像 キューティクルの観察が可能

カーソル	内容	位置
青	二乗平均粗さ: Rq(RMS)	144nm
	平均粗さ:Ra	116nm
	最大高低差:Rmax	548nm
赤	凹凸の高さ	511nm
緑	凹凸の幅	7.24µm

図3 毛髪表面の断面解析 キューティクルの開き具合を評価

計算領域	内容	値	
全体	Rq(RMS)	499nm	
	Ra	419nm	
	Rmax	2363nm	
_	Rq(RMS)	35.9nm	
(2 μ m)	Ra	29.3nm	
(2 μ III)	Rmax	240nm	
_	Rq(RMS)	21.2nm	
□ (2 μ m)	Ra	17.7nm	
(2 μ III)	Rmax	97.5nm	

図4 毛髪表面の粗さ比較 付着物が多い箇所は粗さの値が高い

分析サービスで、あたたの研究開発を強力サポート。

IVIST 材料科学技術振興財団

URL: http://www.mst.or.jp/