ワイドギャップ半導体 β -Ga₂O₃の ドーパント存在サイト同定・電子状態評価

ミクロな原子構造を計算シミュレーションによって評価可能

:計算科学・データ解析 測定法 製品分野:パワーデバイス・酸化物半導体 分析目的:構造評価·化学結合状態評価·電子状態評価

概要

β-Ga₂O₃は広いバンドギャップを有し、優れた送電効率や低コスト化の面で次世代パワーデバイスや 酸化物半導体の材料として期待されています。近年、β-Ga,O。はSiまたはSnのドーピングでn型化する ことが報告されています。本資料では、β-Ga,O,にSiもしくはSnをドープしたモデルに対して構造最適化 計算を実施し、各ドーパントが結晶中でどのサイトを占有しやすいかを評価しました。続いて、得られた 構造モデルから状態密度を計算し、ドーピングによる電子状態の変化を調査しました。

■Si,Snドープ時の構造最適化

2種類存在するGaのサイトに対し、SiもしくはSnを置換したモデルを作成し、構造最適化計算を実施する ことで各ドーパント元素の存在サイトの同定を行いました。

構造最適化後の安定化エネルギー

ドーパント	Si		Sn		
ታイト	Ga(1)	Ga(2)	Ga(1)	Ga(2)	
エネルギー[eV/unit cell]	-220 37.853	-22037.667	-22058.017	-22058.224	

ドープされたSilはGa(1)サイト(4配位)の位置で安定化します。 ドープされたSnltGa(2)サイト(6配位)の位置で安定化します。

構造最適化後のドーパント周囲の構造

サイト	Ga(1)		Ga(2)	
ドーパント	-	Si	-	Sn
平均結合距離[Å]	1.867	1.699	2.028	2.077
結合距離標準偏差	0.016	0.007	0.063	0.036
多面体体積[ų]	3.306	2.480	10.863	11.731

※図はVESTA(https://jp-minerals.org/vesta/jp/)で作成

↑析サービスで、あなたの研究開発を強力サポート! ·般財団法人

・SiはGa(1)サイトへ置換することで、 四面体の歪みを小さくし、 O原子との結合距離を短くします。 ・SnはGa(2)サイトへ置換することで、 八面体の歪みを小さくし、 O原子との結合距離を長くします。

TEL : 03-3749-2525 E-mail : info@mst.or.jp URL : https://www.mst.or.jp/

ワイドギャップ半導体 β -Ga₂O₃の ドーパント存在サイト同定・電子状態評価

ミクロな原子構造を計算シミュレーションによって評価可能

測定法 :計算科学・データ解析

製品分野:パワーデバイス・酸化物半導体

分析目的:構造評価·化学結合状態評価·電子状態評価

データ

■状態密度

 β -Ga₂O₃及びSi、Snドープ β -Ga₂O₃の状態密度(DOS)、部分状態密度(PDOS)を求めました。

計算結果

ドーパント	-	Si	Sn	Si、Snをドーパントとしたとき いずれもフェルミ準位が 伝導帯下端(CBM)に位置し n型化が確認されました。 また、いずれのドーパントに おいても光学ギャップが 広がることが確認されました	
ታイト	-	Ga(1)	Ga(2)		
VBM[eV]	-0.8	-5.2	-5.1		
VBMを構成する主な軌道	O 2p	O 2p	O 2p		
CBM[eV]	3.6	-0.8	-0.8		
CBMを構成する主な軌道	Ga 4s	Ga 4s	Ga 4s Sn 5s		
バンドギャップ[eV]	4.4	4.4	4.3		
光学ギャップ[eV]	4.4	5.2	5.1		

Point

✓実験が難しいナノスケールの現象を、計算シミュレーションから評価が可能

デサービスで、あなたの研究開発を強力サポ ー般財団法人

₩ 5 T 材料科学技術振興財団

TEL : 03-3749-2525 E-mail : info@mst.or.jp URL : https://www.mst.or.jp/